


Introduction/Background

1.1 PROBLEM STATEMENT

This project is dedicated to conducting a comprehensive security analysis of serverless functions executed in
interpreted languages, a prevalent feature across various cloud platforms. These platforms enable users to
run code seamlessly without managing server operations. However, this convenience potentially
compromises security, as customers typically operate under the assumption that their functions are isolated
from others sharing the same physical infrastructure. The research aimed to challenge this assumption by
developing a side channel attack that can differentiate and potentially expose the contents of one function
from another on the same server. This poses a significant risk to the presumed confidentiality and security
of cloud computing environments, where customers expect their operational data to remain private and
unknown to others on the same platform.

INTENDED USERS AND USES

● Researchers
● Hackers
● Students studying computer science, computer engineering, or cybersecurity engineering
● Firecracker developers
● Programmers
● Large scale users of serverless functions, like businesses, should understand the potential dangers

that come with running these serverless functions in a public cloud, and the potential for them to
leak data by being co-located with a malicious actor.

Prior Work/Solutions

There has been nothing done that is exactly like this before. Some things cover partial areas of what we are
doing, but did not go this far. For example this talk “Peeking Behind Serverless Functions”
https://www.usenix.org/system/files/conference/atc18/atc18-wang-liang.pdf, talks about finding
co-residency with your own serverless functions. Along with there being various attacks designed to leak
data from processors like a cache timing attack seen here
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf. Our project will be some combination of both of
these, with the goal requiring us to combine the ideas of finding if we are running alongside another
serverless function, and then attempting to leak data from it.

3 Design

3.1 DESIGN CONTENT

The project is designed to investigate potential data leakage in serverless functions executed in interpreted
languages, with a focus on the risks associated with shared server environments. The methodology centers
on two primary phases:

Detection of Shared Server Environments: The process begins by establishing whether a function is
co-located with others on the same physical server. This is achieved through the analysis of cache footprint
patterns and timing information, which can indicate the presence of other active functions. A series of

https://www.usenix.org/system/files/conference/atc18/atc18-wang-liang.pdf
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf


specially crafted diagnostic functions are used to measure anomalies and patterns consistent with shared
usage.

Data Extraction Trials: Once a shared environment is identified, the next step involves attempting data
extraction from the co-located functions. This phase utilizes side channel attacks, exploiting specific
vulnerabilities found in the implementation of the serverless architecture, such as timing attacks and cache
state analysis. The approach involves creating controlled, benign functions that simulate attack scenarios to
understand how data might be inadvertently exposed through normal operation in a real-world
environment.

Throughout the project, a combination of custom-built tools and existing software is utilized to simulate
and monitor these environments accurately. The test setup mirrors a typical cloud service provider’s
environment (Amazon) to ensure that the findings are applicable and relevant to real-world scenarios.

3.2 Design Complexity
This project combines different computer engineering and computer science theories to form a unique
challenge. There were several constraints put forth in this project that helped narrow down the scope, but
left us with little wiggle room.

1. Memory Caching - In an effort to potentially gather information in our attack, an understanding of
how memory caching works and the different algorithms a system could potentially implement.
These algorithms include: least recently used, first-in first-out, etc..

2. Programming - Low level programming languages have the ability to communicate with the
hardware level of a computer system, but not every system will accept their usage. We had to find
suitable programming languages that could work with Firecracker, but also give us the ability to
gather information about the hardware. Some examples include: Python, Rust, Go, etc…

3. Cloud and Serverless Functions - Creating code that reliably and efficiently runs in a cloud
environment as a whole without incurring extreme cost requires engineering a solution that fits the
scale required. This is further increased in serverless functions where the pricing is based on the
milliseconds that the code spends running, requiring highly optimized code to adequately prevent
extreme cost.

4. Statistical Analysis - The attack we are attempting to use will require analysis of the timing it takes
to gather data from each cache location. We know that each layer in the cache will take, X, amount
of time, so this will tell us when we have cache misses in memory. Using this information we will
create a chart that will reflect the cache misses. Time will be reflected with varying shades of color,
then this visualization will be compared to a main database for any matches of known graphs.

3.3 Modern Engineering Tools

Server: To emulate the cloud environment in which a serverless function would run on, we needed to have a
server set up. The only consideration for this was that the server was able to support the Firecracker
software.

Firecracker: This was one of the constraints to our project, so we needed to use this service. Firecracker is a
Kernel-based Virtual Machine which allows for fast execution speed. The role for this technology in our
project is to support Lambda, which runs serverless functions for clients.



Docker: In the AWS Lambda environment, to further isolate users functions from each other, after placing
them in a microVM, they are then placed into an undisclosed containerization platform. Containerization is
a common practice to improve isolation, and we are using the most common Docker, as the location in
which we will be running the Lambda execution environment inside the Firecracker microVMs. This is to as
closely as possible replicate the real AWS Lambda environment.

AWS Lambda: Lambda is a Software as a Service provided by Amazon Web Services. Lambda is used to
execute code quickly and efficiently via the cloud. This allows users to use the cloud’s resources rather than
their own.

Programming Languages: Python, Go, Ruby, and Perl will be used in many aspects of this project. We used
these languages to determine the size of the system’s L1, L2, and L3 cache. The programming languages we
decided to use had to be compatible with AWS Lambda and we have the tools necessary to successfully
execute a side channel attack. We used Python to create our attack code and it was successful.

3.4 DESIGN CONTEXT

The project will have an effect on all companies and users of serverless functions and specifically the
software Firecracker. This will help the companies understand the potential issues that could come out of
serverless functions, like potential vulnerabilities or data leakages.

List relevant considerations related to your project in each of the following areas:

Area Description Examples

Public health,
safety, and
welfare

This could affect the general safety of the data
that users of serverless functions expect to
have

If we leak information from other
functions, then this could also be
happening in the cloud today, and
leaking private information from
production code.

Global, cultural,
and social

Not applicable Not applicable

Environmental Not applicable Not applicable

Economic This could have an economic impact on users
of serverless functions. If there is an issue that
makes them no longer feel safe enough to use
these functions, then they could have added
the cost of running locally instead of in the
cloud.

If a vulnerability is found, and a
company thinks that their code is
longer safe in the cloud, they would
go and buy servers, and run it
themselves out of their own data
center adding cost.

3.6 DESIGN DECISIONS

Several key decisions have been made to ensure the project runs as it would in the real world. One crucial
decision is the use of a local server for testing functions, instead of the cloud, to prevent potential data
leakage and to avoid cloud costs. This choice not only saves time and money but also eliminates the risk of
exposing uncontrolled data.



Furthermore, the local server is configured to mimic a cloud environment, specifically mirroring setups
similar to those of AWS. This configuration allows code to run in a way that would not require modifications
when transitioning to a real-world environment.

Another constraint pertains to the nature of interacting with serverless functions. These functions are
subject to highly limited runtime and memory constraints. Consequently, the attack code developed must
be efficient enough to operate within these limits, typically requiring runtimes of less than a few minutes
and minimal RAM usage to avoid automatic termination.

3.7 PROPOSED DESIGN

Multiple languages available in serverless functions are being used to explore the capabilities within each.
Efforts include conducting cache timing and throughput tests outside the testing environment. These
implementations are then transitioned into a Docker container that replicates the lambda execution
environment to ensure they continue to function properly.

Following this phase, the focus will shift to scaling up data collection. The data gathered will be utilized to
identify specific functions, further advancing the project's objectives.



3.7.1 Design 0 (Initial Design)

Design Visual and Description

The diagram outlines the workflow of a project that leverages serverless functions, highlighting the absence
of physical hardware in its implementation. This approach focuses on using interpreted languages—Go,
Perl, Python, and Ruby—to gather data about server performance and behavior. The collected data is then



tested on a server configured with numerous micro VMs, facilitating a detailed comparison of data and
vulnerabilities across different interpreted languages.

Following the testing phase, the project culminates in the development of a security analysis report. This
document will detail the findings in a manner accessible to individuals with a background in computer
science or engineering, providing insights into language-specific vulnerabilities within serverless
environments.

1.1 REQUIREMENTS

○ Resource Requirements
■ The code that we create as part of the project itself
■ The serverless function SDKs for intended cloud providers
■ A server, for use in local testing and execution without the dangers of a public

cloud, set up with the help of our client
■ A Firecracker and Docker environment that we can use for testing and data

collection of these functions
○ Legal Requirements

■ If a vulnerability is found, safely and securely report it through the proper
channels, and do not disclose any information until

■ Cannot interact (leak, break, stop, etc), accidentally or intentionally, code that we
do not have explicit ownership and control of while any attack code is running.

○ Performance Requirements
■ Needs to fit in the memory, and time limit of serverless functions
■ Need to ensure that our time measurement programs are running on a single

computer core
■ Output sufficient amount of data that can train a learning model during initial

testing
■ Reduce the output data once a classification model exists to optimize the time and

space required.
○ Maintainability Requirements

■ Write code that uses the basic functions of the language to allow high likelihood
for cross-provider interoperability

■ Include verbose comments about how the code is functioning the usage of SDK
specific instructions that are not 1 for 1 across providers

■ General code development practices that allow for continued maintaining and
usage of code by others in the future.

○ Testing Requirements
■ Environment we set up must mimic actual serverless function runners such as

AWS Lambda
■ What data can be gathered as code is running, and how is it useable
■ That the collected data remains consistent across runnings of the code showing

patterns that can be trained on
■ Methods to effectively transmit, organize, store, and classify data continue to work

for the collected data, and remain consistent
■ We will have to ensure that each of our programs is running as efficiently as

possible and outputting accurate data
■ We will have to consistently test the mimicked serverless environment and ensure

that our code is working properly in this environment



1.1 ENGINEERING STANDARDS
Wonderless:

● Dataset of real-world serverless applications
● Created by trawling GitHub for serverless.yml configuration files
● Broad overview of what serverless applications are like in reality
● See paper here

AWS- Lambda

● Service offered by AWS - serverless computing
● Linked GitHub with AWS containers that are similar to the real Lambda environment
● Standard across all serverless functions provided by AWS

Serverless Framework

● Commonly used framework across serverless computing vendors
● Tied to AWS Lambda (development and deployment framework for it)
● Managing serverless functions one higher level of abstraction

General Cybersecurity Research Standards

● Ethics
● Responsible disclosure
● Research transparency
● Data protection and privacy

Security concerns and countermeasures
Through research, several security vulnerabilities inherent to the architecture of serverless computing have
been identified, particularly when functions are executed in shared environments using interpreted
languages. The primary concerns involve:

Data Leakage: Findings demonstrate potential scenarios where sensitive data could be inadvertently exposed
between co-located lambda functions. This leakage primarily occurs through side channels, where one
function can infer data about another based on resource usage patterns (e.g., CPU cache, execution time).
Cross-Function Interference: Functions running in close proximity may interfere with each other’s
performance and operations, leading to service degradation or unintended behaviors, which can be
exploited maliciously.
Insufficient Isolation: The standard isolation mechanisms employed by serverless platforms may not fully
prevent the leakage of low-level, hardware-based side-channel signals, thus posing a risk of cross-function
espionage.

Proposed Countermeasures
To mitigate these security risks, we propose several countermeasures and best practices:
Enhanced Isolation Protocols: Cloud providers should implement more robust isolation mechanisms that
extend beyond the software layer, incorporating hardware-assisted solutions to segregate the execution
traces of co-located functions.

https://github.com/prg-grp/wonderless/tree/master/impl
https://programming-group.com/assets/pdf/papers/2021_The-wonderless-Dataset-for-Serverless-Computing.pdf
https://github.com/aws/aws-lambda-base-images
https://www.serverless.com/


Regular Audits and Monitoring: Implement continuous monitoring tools that can detect anomalous
behaviors indicative of side channel attacks. Regular security audits can help identify and mitigate newly
emerging vulnerabilities in serverless architectures.
Resource Usage Limits: By setting stringent resource usage limits, cloud providers can reduce the risk of one
function impacting another’s execution environment significantly enough to extract meaningful data.
Developer Education and Guidelines: Educate developers on best practices for designing serverless
applications, emphasizing secure coding practices that minimize the risk of introducing side channel
vulnerabilities.

The implementation of these countermeasures requires collaboration between cloud providers, security
researchers, and the broader developer community. Cloud providers must lead with innovative isolation
technologies and robust monitoring systems, while developers must adhere to security best practices in
their application designs.

Description of how your design has evolved since 491
The design has evolved significantly since 491. To narrow the scope of the project, the group focused on
writing the attack code in one language instead of four or five to focus on working together through
problems instead of splitting up to solve the same problems. This change was beneficial to the group
because all members were working on the same code instead of separate code pieces. Another change the
group made was to not utilize a learning model at this final stage of development. Despite the utility that a
learning model could have provided, the group focused on finding examples of lambdas that could be
profiled with the human eye. This put some constraints on the project, as there were many lambdas that can
not be differentiated by human sight alone, but it allowed for more time to fine tune and streamline much
of the project. These tradeoffs ended up benefiting the progress of the project.

4 Testing
This project was predominantly software-oriented, with our testing efforts centered on the development
and validation of specialized attack code. The primary objective was to devise a method that could precisely
identify specific AWS Lambda functions by analyzing the distinct patterns they leave in the system's cache.
This approach not only aimed to demonstrate the feasibility of such identification but also to expose
potential vulnerabilities within serverless architectures.

4.1 UNIT TESTING

Only specific programming languages are permitted in serverless environments, which required us to source
libraries compatible with the languages we implemented, enabling us to conduct tests locally without
relying on a public cloud. We focused on testing various functional units, including each side-channel
primitive that would be incorporated into our final collection and attack code.

One critical component was the timer. For our purposes, it was essential that each chosen language had an
accurate and high-precision timer available during runtime. The aim of most side-channel attacks is to
discern the differences between cache miss and hit times across different cache layers and physical memory.
Since caches closer to the CPU typically have much shorter response times compared to those further away,
it was imperative to ensure that our timing primitives were precise to the nanosecond scale. We conducted
multiple tests using the same dataset to determine a possible standard deviation, further verifying that
these timers would function effectively across various parameters.



Understanding the cache memory size available on the server running our code was also crucial for
conducting many side-channel attacks, as the easily readable cache size would likely be obscured by
isolation barriers. We needed to monitor cache response times continuously as the system processed our
code. Once we determined the amount of cache memory, we adjusted the code parameters based on the
available cache. Similar testing procedures were employed to ensure our fetch times were not indicative of
the cache levels above or below our benchmark. After estimating the cache size, we modified the parameters
accordingly in all other primitives used.

4.2 INTERFACE TESTING

A number of interface points were tested during our project. The primary interface tested was the internal
communication between components and primitives. This was essential to ensure that information
determined by one primitive could properly influence the parameters of another primitive receiving this
information.

We also tested the interface between the low-output data and the attack code, to verify that the data created
and generated by both were accurate and functioned properly.

Finally, the interface back to the attack code with the updated parameters was critically assessed. We
ensured that all components automatically adjusted based on the input received before attempting to leak
data. This step was crucial to ensure that the leaked data was correctly captured by the waiting capture tool.

4.3 INTEGRATION TESTING

Maintaining well-commented and legible code was crucial in reducing integration challenges throughout
our project. The project primarily focused on the execution of code, interpreting the results, and identifying
specific lambda functions within a constrained serverless environment. Successful integration was defined
by the attack code functioning correctly in this environment, specifically its ability to accurately determine
cache hits and misses within an acceptable time deviation.

We adopted an Agile methodology, where testing and development occurred frequently, allowing for
continuous improvements and adaptations. Given the predefined list of languages supported by serverless
functions, each team member selected a language to explore and exploit potential side-channel
vulnerabilities.

The ultimate measure of integration success was the attack code's ability to execute flawlessly in the
serverless environment, delivering precise timing results and correctly identifying cache dynamics. We
successfully identified certain lambda functions using our Python-based attack code, confirming the efficacy
of our approach and the reliability of our testing processes.

4.4 SYSTEM TESTING

A critical component of our project involved ensuring that our code adhered to the operational constraints
set by cloud providers. Although we used our own hardware for testing to enhance security, we built a
system that closely emulated real cloud environments. Cloud providers frequently offer container images to
facilitate local testing before deployment. We utilized these resources, along with AWS's Firecracker
microVM software, which is designed to house the containers that execute the code.



In our tests, we were able to accurately emulate the cloud environment and conduct our evaluations without
the need for actual cloud deployment. This setup allowed us to meticulously measure the time and space
requirements imposed by the providers and verify that our code remained within these limits. Running the
code locally also enabled us to segment and test each function individually. This granularity in testing was
crucial for identifying specific sections of the code needing improvement or those that were not meeting the
required constraints.

4.5 REGRESSION TESTING

To ensure that new additions did not disrupt existing functionality, we meticulously preserved functioning
code both locally and on the server. This precaution guaranteed backups were available, even if code was
accidentally deleted either locally or on the server. We also utilized GitLab for version control, allowing us to
push all functional code to the repository, from where it could always be recovered if necessary.

A critical aspect of our testing was to ensure the uninterrupted operation of our server and the proper
functionality of our Micro VMs and associated code. The server, which was shared with our professor and
not entirely under our control, was a vital component of our system design. Ensuring that the server
operated correctly during all testing phases was paramount, especially in managing the language-specific
coding tests.

One significant challenge we encountered was conducting tests when the server was not in use by others.
Testing concurrently with other users often compromised our results, necessitating scheduling tests during
off-peak hours to avoid interference.

Our design was driven by strict requirements. We needed to ensure that our code was written correctly and
functioned as expected. Accurate data collection and the reliable performance of our server were imperative.
Additionally, it was essential that our webserver accurately emulated Amazon's environment, reflecting the
real-world conditions our system aimed to mimic.

4.6 ACCEPTANCE TESTING

Throughout our project, we consistently demonstrated that both functional and non-functional
requirements were met by engaging frequently with our client, who also served as our primary point of
contact. Our regular meetings were essential for discussing project goals and addressing any issues that
arose during the development process.
We focused on collecting data that illustrated the specific security vulnerabilities associated with using
Python in a serverless environment. This approach highlighted the effectiveness of our Python-based side
channel attack methodology and its relevance to real-world security challenges.
As the school year progressed, we continued these demonstrations, showcasing how our Python code
functioned and effectively collected data. This not only confirmed that our system performed as expected
under simulated conditions but also provided opportunities to refine our approach based on feedback.
These interactions ensured that the project's codebase was thoroughly tested and met all specified criteria
set by our client.



4.7 SECURITY TESTING (IF APPLICABLE)

Security testing played a pivotal role in our project, ensuring that our web server, environment, and
Python-based side channel attack code were secure and resistant to malicious use. Given the sensitive
nature of identifying lambda functions, it was imperative to uphold high security standards to prevent any
misuse of our methodologies or findings. We meticulously designed our webserver and testing environment
to adhere to best practices in security. Throughout the testing phase, we utilized our attack code to identify
some lambda functions.

4.8 RESULTS

Our team has successfully developed a side channel attack methodology to identify AWS Lambda functions
based exclusively on their cache footprints. Our project aimed at understanding the cache impression of
Lambda functions and utilizing this information to discern their identities.

Accomplishments: We engineered an attack framework, built a complete web server from scratch, and
generated Lambda functions to test our hypothesis. This comprehensive setup allowed us to identify specific
Lambda functions that exhibited distinct cache impacts. While not all functions could be detected—owing
to their minimal cache interaction—those with significant impacts were consistently identifiable.

Technical Insights: The challenge lay in the diverse ways each Lambda function utilized CPU cores, affecting
their cache footprints. Our approach involved meticulous analysis and replication of Amazon's serverless
environment, which was crucial for obtaining realistic and actionable insights. The environment setup was
particularly challenging but was ultimately successful, ensuring that our findings could hypothetically
translate into real-world scenarios.

Results and Achievements: The project met its goal by identifying functions with pronounced cache
impacts, demonstrating the feasibility of a cache-based side channel attack in an interpreted language
environment.

Challenges Overcome: One significant hurdle was replicating an AWS-like environment to ensure our
experiments mirrored real-world operations. Despite initial obstacles, our team adapted and overcame this
by deploying customized solutions that mimicked those used by Amazon.

This project not only underscores the vulnerability of serverless functions to side channel attacks but also
propels forward our understanding of cloud computing security.

Implementation details

5 Implementation Details
Experiment Setup

To conduct the side channel attack experiments, first establish a controlled environment that mimics a
typical cloud server hosting serverless functions. This setup involved:



Server Configuration: A configured virtualized environment using hypervisors that simulate the cloud
infrastructure. Multiple isolated virtual machines (VMs) were set up to represent different tenants running
concurrent serverless functions.

Lambda Function Deployment: Deploying a variety of custom lambda functions written in Python. These
functions are designed to vary in complexity and resource usage, from simple computational tasks to
complex data processing operations, to represent real-world serverless applications.

Detection Techniques

The detection phase focused on identifying lambda functions being run.

Cache Behavior Analysis: By observing the cache access patterns and timings, one could infer the presence
of other functions affecting the cache state. Significant deviations from baseline measurements indicated
that their might have been some flaws in some of the returned results. For example, we would occasionally
get a negative value.

Resource Utilization Patterns: Monitored CPU and memory usage patterns to detect anomalies that suggest
interactions or interference between functions, which might also indicate shared hardware.

Exploitation Methods

Experimented with several side channel attack vectors:

Time-based Attacks: Measuring the time it takes for certain operations to complete allowed us to infer
about other processes running on the same server. For instance, increased execution time might indicate
high CPU usage by another function.

Cache-based Attacks: Implemented strategies to observe and manipulate the CPU cache to extract
information about other functions' activities. This involved creating controlled contention on the cache and
measuring the impact on execution times of our lambda functions.

Conclusion

This comprehensive setup allowed us to not only demonstrate the feasibility of side channel attacks in a
cloud-like environment but also test and verify the effectiveness of various countermeasures. The insights
gained from these experiments are critical for improving the security frameworks of serverless computing
platforms.



Functionality

Since our project was similar to a research project, the functionality was not entirely known. The data we
collected could have been inaccurate which would have caused a lot of problems in creating our final report.
However, we wrote code that worked properly, and used that code to collect accurate data about different
lambda functions being run. We have more non-functional requirements since our data relies on efficiency,
usability, and reliability. We are now able to explain the benefits and drawbacks of using lambda functions
in a serverless environment.

6 Broader Context

6.1 Impact on Public Health, Safety, and Welfare

The research project on security vulnerabilities in serverless computing significantly impacts public health,
safety, and welfare by enhancing data security and privacy for cloud service users. By identifying and



mitigating risks like data leakage and insufficient isolation, the project protects sensitive personal and
organizational data, which is crucial for users storing critical information such as health records and
financial data.

Preventing Malicious Exploits: Addressing vulnerabilities prevents potential malicious uses, protecting
businesses and individuals from financial losses and service disruptions.

Regulatory Compliance and Trust: Improving security practices aids organizations in meeting stringent data
protection regulations, enhancing trust in cloud technologies used in critical sectors like healthcare and
banking.

Community and Educational Benefits: Secure serverless platforms foster economic and social benefits by
encouraging innovation and providing a safer environment for new digital services. Additionally, the project
has an educational component, improving developer understanding of security in software development,
which indirectly benefits public welfare by promoting safer digital environments.

Overall, this project not only addresses technical security challenges but also enhances the digital safety and
welfare of various stakeholder groups by ensuring more secure and reliable cloud computing environments.

6.2 Global, Cultural, and Social Impact

The project on security vulnerabilities in serverless computing systems extends its impact beyond technical
realms, touching on global, cultural, and social dimensions. By enhancing security in cloud technologies,
the project aligns with the values, practices, and aims of diverse cultural groups, reflecting a universal
commitment to data privacy and cybersecurity.

Global Relevance: In a world increasingly reliant on digital services, the project’s emphasis on robust
security protocols in serverless computing caters to a global audience. With cloud services transcending
national borders, improving these systems ensures that people and businesses worldwide can trust and rely
on technology for essential services, fostering global digital resilience.

Cultural Sensitivity: The project considers the varied importance of data privacy across different cultures. In
regions where data protection is highly valued and strictly regulated, such as the European Union, the
project's focus on enhancing security and compliance aligns with local cultural and legal expectations, thus
respecting and reinforcing these norms.

Professional and Workplace Impact: For professionals in the IT and cybersecurity fields, the project reflects
the best practices and evolving standards of the profession. It provides a framework that other professionals
can adopt, thus promoting a culture of continuous improvement and innovation within workplaces that rely
on cloud technologies.

In summary, this project not only addresses technical security concerns but also considers the broader
global, cultural, and social contexts. It reflects and respects the diverse values and practices of the
communities it impacts, promoting a safer, more inclusive digital world.



6.3 Environmental Impact

The project on identifying vulnerabilities in serverless computing, though digital, has noteworthy
environmental implications, particularly concerning energy consumption and electronic waste.

Reduced Energy Consumption: By optimizing server resource usage through serverless computing, this
project supports the broader adoption of systems that require less energy for data processing and storage.
Efficient server utilization helps reduce the overall energy demands of data centers.

Decrease in Electronic Waste: Enhancing the security of serverless architectures may extend the lifespan of
server hardware, reducing the need for frequent upgrades and minimizing electronic waste. This contributes
to lessening the tech industry’s impact from rapid hardware turnover.

Indirect Environmental Benefits: Promoting serverless computing reduces the need for extensive
on-premises servers, decreasing the energy used for power and cooling. This shift to cloud-based services
can lead to a lower carbon footprint in IT operations.

In summary, while primarily focused on cybersecurity, this project contributes to environmental
sustainability by promoting energy efficiency and reducing electronic waste through the enhanced security
and adoption of serverless computing.

6.4 Economic Impact

The project focusing on enhancing the security of serverless computing platforms carries significant
economic implications, both within the tech industry and broader economic realms.

Cost Efficiency for Companies: By improving the security frameworks of serverless computing, the project
helps companies reduce the potential financial losses associated with data breaches and cyber-attacks.
Secure serverless platforms allow businesses to trust cloud environments for their operations, minimizing
the costs associated with managing and maintaining on-premises servers. This shift can lead to significant
savings in IT budgets, reallocating resources to other critical areas of business development.

Consumer Costs: For consumers and small businesses, the adoption of serverless computing can translate
into lower costs of digital services. As providers pass down the savings from reduced infrastructure and
operational costs, consumers may benefit from more affordable, scalable, and secure cloud-based services.

Broader Economic Effects: On a larger scale, the project's impact on improving serverless computing
security can enhance overall economic stability by safeguarding critical infrastructure and data. This
protection is crucial for sectors like finance, healthcare, and government, where data integrity and security
are paramount. Enhancing the security of these systems helps prevent potentially massive economic
disruptions caused by cybersecurity incidents.

Reduced Economic Disparities: By making secure computing more accessible and affordable, serverless
technology can help reduce economic disparities between large corporations and smaller entities. Small
businesses and startups can leverage the same powerful tools as larger companies without the substantial
upfront investment, leveling the playing field and fostering more inclusive economic growth.



In conclusion, the project's focus on securing serverless computing platforms has the potential to drive
substantial economic benefits, ranging from direct cost savings for businesses to broader impacts on market
stability and growth. These benefits underscore the importance of cybersecurity investments and their role
in shaping the economic landscape of digital and cloud services.

7 CONCLUSION

This project has thoroughly examined the security vulnerabilities inherent in serverless computing systems,
specifically those using interpreted languages. Through detailed analysis and testing, we successfully
demonstrated the potential risks and data leakage scenarios that can arise when lambda functions are
executed in shared server environments. The findings have emphasized the critical need for robust security
measures to mitigate such risks.

Key Accomplishments: Developed an effective side channel attack that can identify specific lambda
functions based on their unique cache footprints. This methodology not only highlighted the vulnerabilities
in current serverless architectures but also showcased our ability to pinpoint areas for improvement in cloud
security practices.

Challenges Overcome: One of the major challenges was creating an environment that accurately simulates
real-world serverless computing conditions. Despite these hurdles, the team was able to replicate the cloud
environment and perform meaningful security tests, which were essential for our research.

Future Directions: Looking forward, there is a clear path to refine and expand techniques. Further research
is needed to cover a wider range of languages and execution environments. Additionally, future plans are to
develop more advanced countermeasures against the types of vulnerabilities discovered, ensuring that
serverless computing can continue to grow as a secure platform for modern software applications.

Impact of the Project: The outcomes of this project contribute significantly to the understanding of security
in serverless computing, providing valuable insights for cloud providers, security experts, and software
developers. The work not only enhances the security framework but also supports the broader adoption of
serverless technology by ensuring it meets stringent security standards.

In conclusion, this project serves as a foundation for future efforts aimed at securing serverless architectures
and promotes a deeper understanding of how interpreted languages can influence the security landscape of
cloud computing. Through continuous innovation and rigorous testing, we can anticipate and counteract
the evolving threats in serverless environments.

Review progress
As the project on security vulnerabilities in serverless computing environments reaches a significant
milestone, it is crucial to reflect on the progress made, evaluate the outcomes, and consider the lessons
learned. This review highlights the advancements, addresses challenges encountered, and measures
achievements against the initial project objectives.

Achievements: The successful development and implementation of a side channel attack methodology
capable of identifying lambda functions based on their cache impressions not only met the primary goal but
also advanced understanding of potential security breaches within serverless architectures.



Methodology Refinement: Throughout the project, testing methods and diagnostic tools were refined to
enhance accuracy and reliability. These adaptations resulted in more robust data collection and analysis
processes, ensuring that findings are both valid and applicable to real-world scenarios.

Challenges Encountered: A major challenge was the complexity of simulating an accurate cloud
environment for testing. Adapting the approach to overcome these difficulties was instrumental in
maintaining the integrity and relevance of the research.

Lessons Learned: The project has been an invaluable learning experience, providing deep insights into both
the technical aspects of serverless computing and the practical challenges of conducting security research in
this field. It highlighted the effectiveness of collaborative teamwork, resource management, and navigating
the complexities of innovative cybersecurity research.

Future Directions: With a solid foundation laid by the current phase of research, future work will focus on
expanding the scope of testing to include additional programming languages and more complex serverless
architectures. The aim is also to develop a machine learning model that can accurately predict what lambda
function is being run based on the data it is fed.

Value of the Design toward the problem and users
The design developed in this project addresses critical security vulnerabilities within serverless computing
platforms, providing substantial value both in solving prevalent issues and enhancing user experience. By
focusing on the detection and mitigation of security risks, such as data leakage and cross-function
interference, the design directly contributes to safer cloud environments. This improvement is crucial for
users relying on these platforms for processing sensitive data and running critical applications.

Enhanced Security: The side channel attack methodology enables the identification of lambda functions
based on their cache impressions, highlighting potential security breaches. This capability allows cloud
service providers to better monitor and secure their environments, preventing unauthorized data access and
ensuring the integrity of hosted applications.

Increased Trust: By demonstrating the ability to detect and address security vulnerabilities effectively, the
design fosters greater trust among users. Businesses and developers are more likely to adopt and invest in
serverless technologies knowing that they are protected against emerging security threats.

Scalability and Flexibility: The project's design supports scalability and flexibility, key attributes valued by
users of cloud services. As serverless computing automatically adjusts resource allocation based on demand,
the integrated security measures ensure that these adjustments do not compromise the system’s security.
This scalability ensures that the solution is effective for both small-scale applications and large enterprise
systems.

Proactive Risk Management: The ability to foresee and mitigate potential vulnerabilities before they are
exploited is a significant advantage for users. This proactive approach to security not only protects data but
also helps maintain continuous service availability and performance, which are critical for business
operations.

Potential Future Steps for Technical Development and Societal
Value



The project's success in identifying security vulnerabilities in serverless computing paves the way for several
future steps that promise to enhance technical development and provide value for users and society. These
steps include advancing machine learning models, testing in real-world environments, and broadening the
range of interpreted languages utilized. Each of these initiatives aims to refine the effectiveness of security
measures and expand the applicability and safety of serverless computing platforms.

Training and Testing a Machine Learning Model: A key future step involves developing a machine learning
model to improve the detection of vulnerabilities. By training this model on vast datasets derived from
various attack scenarios, it can learn to predict and identify potential security breaches more efficiently.
Testing this model rigorously will ensure its accuracy and reliability in predicting threats, thereby enhancing
the security protocols of serverless computing environments.

Testing Attack Code in Real Environments: To validate the effectiveness of the newly developed security
measures and the robustness of the attack code, it is essential to conduct tests in real-world environments.
This testing will help uncover any unforeseen issues and ensure that the attack code can operate effectively
under various operational conditions. It will also allow for adjustments based on real user data and
operational feedback, ensuring the solution is not only theoretically sound but also practically viable.

Expanding the Interpreted Languages Used: Broadening the scope of interpreted languages covered by the
security analysis is another significant future step. By including more languages, such as Go, Pearl, or others
commonly used in serverless architectures, the project can cater to a wider user base. This expansion will
help address the unique vulnerabilities of each language, thereby providing a more comprehensive security
solution that benefits a larger segment of the serverless community.

Providing value for Users and Society:
● Enhanced Data Security: By continuously improving security measures, the project ensures the

protection of sensitive user data across various industries, including healthcare, finance, and
government, thus supporting societal trust in digital services.

● Economic Efficiency: Improved security reduces the economic impacts of data breaches and
enhances the operational efficiency of serverless computing, passing cost savings to users and
boosting the economic viability of adopting cloud technologies.

● Promoting Technological Innovation: As the project expands to cover more languages and
integrates advanced technologies like machine learning, it fosters innovation within the tech
community. This not only drives technological advancements but also encourages a culture of
security-first thinking in software development.

APPENDIX 1: OPERATION MANUAL

Initializing the requirements for the backend

The backend server requires the ability to do a number of privileged actions such as creating networking
interfaces and mounting disks. There is an inti.sh bash script that will add a sudoers file that is needed to
allow these privileged actions, download the required executables, download needed images, setup docker
to allow for networking to the VMs, check the iptables rules that need created for the networking process,
and create the access keys needed for the Minio server acting as an s3 bucket.

Because of the requirements needed with changing the sudoers files, and making privileged downloads, it is
required to run this script as root, ideally with sudo, such as seen below.



Creating the root filesystems

While the server itself has been initialized, there are no file systems that can be used to actually run lambda
code yet; this is what this step will be doing. Inside “resources/build_image” there are a pair of scripts that
can be used to create file systems for ruby and python lambda functions to run on the server. The scripts
will take a base Linux image and transform it into a file system that automatically runs the lambda code at
startup. To do this, it makes a number of changes to the boot sequence to allow for networking, sets upthe
startup process to spawn the lambda, mounts the external disk containing the lambda code, and copies the
appropriate runtime files from a docker container made by AWS for testing lambda functions locally to
make the environment as close as possible. After this copy, it will then make a number of minor changes to
this code that allows for the automated passing in of the starting function instead of needing to be
hard-coded like the docker image.

Creating your first lambda

The next major step that needs to be done to actually get your own lambda function running is creating the
lambda itself. This will involve placing some files in the “src/lambdas” folder that the backend will use to
run the code on demand. The first step involves creating a new folder inside this directory for example
“aws-python” which could contain a basic python lambda code seen below in a file named handler.py.



This is the code that will execute each time your lambda is called with the event being the json data as a
string that was sent to the function, and the context including information about how the function is
running. Alongside this, there is another file that needs to be created for the server to recognize this as a
lambda function; this file is “serverless.yml.”

This file will contain information about the function itself including the function name as the title item in
the list, and the handler which has the format <file name>.<function name>. This is used to call the lambda
when it starts. The provider section with “name: aws” is required, and the runtime is required to match the
runtime you want to use for the function. At this point, once you start the server, that will be enough to
cause the lambda to automatically show up on the main page.



Note how this example lambda was given 512MB of RAM and a single CPU core. Just as this can be changed
when creating a lambda function, it can be changed here too in the serverless.yml file. By adding the cores
or memory sections to the file underneath the specific function, it will create it with those constraints
instead of the default.

Using Minio S3 in a lambda function

Part of the server running is that there is additional Minio server running, which is an S3 compatible storage
system that allows for the lambda functions to transfer files. This does require a minor configuration change
inside the lambda code you will want to run. The first thing that you will need to do is print out the secret
key created as part of the initialization process. This is done by running the following commands:



This will print out two lines, one with “AWS_ACCESS_KEY_ID”, and one with “AWS_SECRET_ACCESS_KEY”
these will be used in the code. The change the needs to be made in your lambda code is setting AWS’s boto3
client to use the custom endpoint of “http://192.168.24.2:9000”, and providing the custom access
AWS_ACCESS_KEY_ID, and AWS_SECRET_ACCESS_KEY to the client allowing it to authenticate with the
server.

At this point you can use the created s3_client as you would with a normal s3 client from the boto3 library.
The same idea can be done for any code that is running locally and not in lambda, but replacing the
endpoint url with “http://localhost:9000” while keeping the secret access key and the access key id the
same. If you are on the server itself, you are also able to login to the Minio GUI by going to
http://localhost:9000/ in the browser.

http://192.168.24.2:9000
http://localhost:9000
http://localhost:9000/


This page will ask for login. The username to login with is the AWS_ACCESS_KEY_ID, and the password is
the AWS_SECRET_ACCESS_KEY.

Running the server

At this point the server itself is ready to be run, and can be started. The simplest way to do this is with the
script “run.sh” in the backend folder that makes it as simple as running ./run.sh. However, if you want to
start the server manually, you need these commands in order to properly setup the environment and start
the Minio service.



At this point, you can go to http://localhost:8000 and see the following page with any of the functions that
you created in the src/lambdas folder below this. This is the main user interface for manually starting and
stopping the functions themselves.

These user interface options are rather simple and can be seen below. There is the button labeled “rebuild”
to save startup time, the first time that a function is run a new filesystem to store that function is created
and saved in the temporary directory. However, that means if there is a change in the files since the last time
that it was started up, then it will not reflect those changes. This button will cause that filesystem to be
rebuilt, so that it can reflect any changes that were made. The second button start is a way to manually start
the VM, the firecracker VM that contains the lambda function.

http://localhost:8000


Running a Lambda Function

After starting a function, you can make a traditional function call straight directly to the server on the
endpoint http://server-name:8000/function/<function_name>/. Do note that the ending slash is a
requirement, and will result in an error if that is not given.

Here is an example of running the hello function from earlier by using curl to make a request to the server,
and it responds back with the value that we passed in.

Debugging a Lambda Function

At some point there might be a weird error that happens like your lambda function not returning any data.
Since the VM that function runs is fully networked, it is possible to ssh into this virtual machine and check
out the logging of the VM to understand what is going wrong. The first step is getting the IP address of the
machine which can be seen on the main website page.

After this the ssh key that needs to be used to login is the data section of the webserver. So you can cd in the
“src/backend” folder again. Then run the command below to actually ssh into the VM.

From here it is possible to use many of the traditional linux commands to go through the debugging
process. The most important detail to know though is that there is systemd service that causes the lambda
to start at boot which is named “lambda”, so you can check the current status of that service with “systemctl
status lambda”, or check the log history of it with “journalctl -xeu lambda”

Using the API to start and stop functions

The starting and stopping of the functions does not have to be done manually however, and there is an easy
API that can be used to start and stop them instead. It is simply making a POST request to the start, or stop
end points respectively where the parameter is the name of the function to be started or stopped as seen in
the 2 curl commands below.

http://server-name:8000/function/


How to run multiple functions side-by-side

The server fully supports running and routing multiple functions at the same time. This can best be seen in
the short script below how to do that. First, you will start up both of the functions using the start endpoint,
then make a request to each of the functions, with any function that you do not want to wait on being
backgrounded with the “&”. This code will wait for function2 to complete, then attempt to stop the VMs.
This stop is a blocking request that will wait for the Lambda to have no open requests to it before actually
stopping the VM that is running that lambda. This will result in both of these functions closing only after
they have both completed.

How to clean up in the event of an error

While the server does its best to always clean up after itself by closing sockets, stopping processes, and
releasing handles. There are times where if there is a sudden stopping, such a disconnect from the person
running the server, that it will leave certain resources partially open. It is at the point where none of the
resources that are left open will use significant resources on the system, but it will prevent the server from
running properly the next time that it is run. For this, there was a script that was made, and is in the
“src/backend” folder named “clean.sh” that will go through the cleanup process cleaning up any of those
open resources that got left behind. If you happen to see an error such as a “socket error” or an “already in
use error” or some other odd error that appears to have no real cause, this is the best first option to begin
troubleshooting the issue.


